Hartman Institute for Therapeutic Organ Regeneration

Anthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis.

TitleAnthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis.
Publication TypeJournal Article
Year of Publication2003
AuthorsKim Y, Ma A-G, Kitta K, Fitch SN, Ikeda T, Ihara Y, Simon AR, Evans T, Suzuki YJ
JournalMol Pharmacol
Volume63
Issue2
Pagination368-77
Date Published2003 Feb
ISSN0026-895X
KeywordsAnimals, Antibiotics, Antineoplastic, Apoptosis, DNA, DNA-Binding Proteins, Down-Regulation, GATA4 Transcription Factor, Gene Expression, Heart, Mice, Myocardium, Oxidants, Transcription Factors
Abstract

Anthracyclines are effective cancer chemotherapeutic agents but can induce serious cardiotoxicity. Understanding the mechanism of cardiac damage by these agents will help in development of better therapeutic strategies against cancer. The GATA-4 transcription factor is an important regulator of cardiac muscle cells. The present study demonstrates that anthracyclines can down-regulate GATA-4 activity. Treatment of HL-1 cardiac muscle cells or isolated adult rat ventricular myocytes with anthracyclines such as daunorubicin and doxorubicin decreased the level of GATA-4 DNA-binding activity. The mechanism of decreased GATA-4 activity acts at the level of the GATA-4 gene, because anthracyclines caused significantly decreased levels of GATA-4 protein and mRNA. The rate of decline in GATA-4 transcript levels in the presence of actinomycin D was unaltered by anthracyclines, indicating that these agents may affect directly GATA-4 gene transcription. To determine whether decreased GATA-4 levels are functionally related to cardiac muscle cell death that can be induced by anthracyclines, the ability of ectopic GATA factors to rescue anthracycline-induced apoptosis was tested. Adenovirus-mediated expression of either GATA-4 or GATA-6 was sufficient to attenuate the incidence of apoptosis. Furthermore, suppression of GATA-4 DNA-binding activity by a dominant negative mutant of GATA-4 induced the apoptosis. These results suggest that the mechanism of anthracycline-induced cardiotoxicity may involve the down-regulation of GATA-4 and the induction of apoptosis.

DOI10.1124/mol.63.2.368
Alternate JournalMol Pharmacol
PubMed ID12527808
Grant ListHL64282 / HL / NHLBI NIH HHS / United States

Weill Cornell Medicine
Hartman Institute for Therapeutic Organ Regeneration
1300 York Ave, Box 136 New York, NY 10065